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Abstract 

In this paper, we introduce a fully automated low cost 
hardware/software platform for efficiently performing fault 
emulation experiments targeting SEUs in the configuration bits of 
FPGA devices, without the need for expensive radiation 
experiments. We propose a method for significantly reducing the 
fault list by removing the faults on unused LUT bit positions. We 
also target the design Flip-Flops found in the Configurable Logic 
Blocks (CLBs) inside the FPGA. Run-time reconfigurability of 
Virtex devices using JBits is exploited to provide the means not 
only for fault injection but fault detection as well. First, we 
consider five possible application scenarios for evaluating 
different self-test schemes. Then, we apply the least favorite and 
most time consuming of these scenarios on two 32x32 multiplier 
designs, demonstrating that transferring the simulation processing 
workload to FPGA hardware can allow for acceleration of 
simulation time of more than two orders of magnitude. 

 
1. Introduction 

Moving to Very Deep Sub Micron (VDSM) technology, chips 
become increasingly prone to faulty behavior caused by cosmic or 
artificial radiation. Such faults are modeled as Single Event 
Upsets (SEUs) in the form of bit-flips [1]. SRAM-based FPGA 
devices are steadily becoming the most suitable platform for 
implementing modern system applications due to their high 
reconfigurability, low cost and availability, which promote fast 
time-to-market. SRAM-based FPGAs, however, are much more 
susceptible to SEUs than ASICs. Recently, SEU effects on 
SRAM-based FPGA resources has been a field of research [1], 
[2], [3], [4], [5]. When dealing with SEUs in SRAM-based 
FPGAs, two types of fault locations need to be considered:   

1. Upsets in the Flip-Flops in the form of a bit-flip.  
2. Upsets in the configuration bits that control the 

combinational and sequential logic (Look-Up Tables, 
MUXes, Flip-Flop initialization bits) and routing. 

Ionizing radiation hitting a design Flip-Flop or one of its 
control signal inputs can invert its stored logic value. These upsets 
could be harmful if allowed to propagate through states at the rest 
of the circuit. For example, in the case of FSM state registers 
where feedback is present, the effect of the upset could be 
detrimental to the system’s operation.  

Furthermore, a SEU can “permanently” change the function of 
the configured circuit by hitting a configuration SRAM cell. For 
example (Figure 1), ionizing radiation hitting a LUT configuration 
bit will change the output function to represent another logic gate 
(or set of gates). No actual permanent damage is inflicted upon the 
device since after power cycling the FPGA board, a fresh copy of 
the configuration bitstream will be loaded from the external 
configuration memory to the FPGA device and eradicate the fault.  
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Figure 1 Effect of a SEU in a LUT 

 
When designing circuits to be implemented in FPGAs, it is 

unrealistic to consider structural fault models, i.e. stuck-at, 
transition faults, since FPGAs do not have a gate level 
representation for which such faults can be modeled. For example, 
in Figure 1 we show that a SEU changes an AND gate to a XNOR 
gate. In SRAM-based FPGAs, individual memory cells control the 
configuration of CLB and routing resources to implement the 
designed circuit. Attempting to model LUTs as equivalent gate 
circuits and inject stuck-at faults will not address the effect of 
SEUs which are the dominant faults in FPGAs. Existing fault 
simulators employ structural fault models which are not applicable 
to FPGAs affected by SEUs. 

An alternative method to emulate the effects of SEUs is to 
employ functional simulators of the FPGA devices. However, 
FPGA fault simulation of large circuits even when performed by 
multi-GHz workstations requires a vast amount of processing 
time. When dealing with large system applications the required 
simulation time becomes prohibitive. Currently, VirtexDS [6] 
designed by Xilinx is a software device simulator that can be used 
in order to simulate the functions of FPGA devices, more 
specifically Xilinx’s Virtex series.  

By transferring the simulation process of combinational 
circuits to actual hardware, a speed-up of two orders of magnitude 
has been indicated over software simulation [7]. For large 
sequential circuits and long test patterns, due to complexity, we 
can expect higher performance increases from hardware 
emulation. Besides, by building hardware emulation capabilities in 
a prototype board of the developed system with all its peripheral 
circuitry, it is technically realizable to emulate the effects of SEUs 
in a prototype as these would appear during in-field operation.  

Software simulation introduces outstanding time cost, while 
radiation experiments designed to introduce SEUs in SRAM-
based FPGA devices under operation are expensive in terms of 
equipment used. In addition, radiation is harmful to the FPGA 
device itself. A non-destructive, non-intrusive fault emulation 
platform addressing the effects of SEUs in FPGAs is becoming 
increasingly challenging. 

The same technology feature that makes SRAM-based FPGAs 
vulnerable to SEUs can also be used to develop techniques that 
detect and correct the effects of SEUs; Run-Time Reconfiguration 
(RTR), i.e. reconfiguration of the system during normal operation 
in order to perform a different function. RTR comes in two 
variants, full and partial. Partial RTR allows small portions of the 
FPGA’s configuration memory to be altered using small partial 



 

    

bitstreams. Partial RTR is used to perform minor changes in the 
configured circuit on the FPGA, accelerating the fault injection 
process required in our work. VirtexDS supports full and partial 
RTR operations. We utilize VirtexDS as a fault simulator by 
changing the configuration memory and using partial RTR to 
compare with the proposed fault emulation platform. 

In this paper we concentrate our interest in the investigation of 
SEUs in the device configuration bits and user design registers. 
More specifically, we focus on the faults affecting the used LUT 
configuration bits of CLB Function Generators and CLB Flip-
Flops used by the implemented circuit. As reported in previous 
works (e.g. [7]), the faults affecting only the LUT configuration 
bits can be considered as an effective sampling technique. As 
demonstrated through radiation experiments [3] the LUTs are the 
most SEU sensitive resources of the device; not only directly by 
SEUs affecting the LUT configuration bits, but also indirectly, 
with particles affecting other resources of the device, for example, 
affecting the LUT write enable line may induce corruptions to all 
bits in one LUT. We regard the 4-input LUT as a 16-bit vector for 
which SEUs can occur and alter the implemented function so as to 
represent an entirely different circuit.  

In this paper, a fully automated low cost hardware/software 
fault emulator platform usable with any Virtex-based board is 
presented. Selection of board is limited only by the availability of 
the SelectMAP programming port pins to the user, thus allowing 
the use of low cost prototyping or evaluation boards. Also, 
algorithms used for LUT and Flip-Flop fault list extraction and 
fault injection are presented. A method for significantly reducing 
the fault list by removing the faults on unused LUT bit positions is 
proposed. Then, five possible scenarios for fault injection and 
detection on different types of implemented circuits supported by 
our fault emulator are described. Finally, experimental results 
using the implemented fault emulator on two 32x32 multipliers, 
with and without pipelining, are exhibited, demonstrating that a 
speed increase of two orders of magnitude is achieved in the case 
of combinational circuits, while a speed increase of two orders of 
magnitude is achieved for sequential circuit designs. 

 
2. Previous Work 

Fault injection by radiation exposure has been investigated in 
[3] targeting FPGA configuration bits aiming to characterize the 
sensitivity of the configuration memory to SEUs. A simulation-
based fault injection tool is presented for calculating the 
implemented circuit error rate. An FPGA SEU simulator platform 
to represent radiation induced configuration bitstream upsets was 
presented in [4] based on a Virtex FPGA board. The SEU 
simulator predicted 97% of the output errors observed during 
radiation testing experiments, thus provided an affordable 
platform to explore costs and benefits of various SEU mitigation 
techniques. A fault injection environment was proposed in [2] as 
an alternative to radiation testing experiments. Publicly available 
software by Xilinx, JBits, was used for accessing, analyzing and 
modifying configuration memory resources, while VirtexDS was 
used to simulate the FPGA device performing fault injection 
experiments. Experimental results were provided using functional 
test vectors and fault injection in a random fault list of ITC99 
benchmarks. Since VirtexDS is a software device simulator, the 
fault injection environment is highly CPU-time consuming and 
not practical for large designs. 

In [9], [10], a software/hardware fault injection platform is 
presented that allows direct manipulation of the configuration 
bitstream on Xilinx’s Spartan2 FPGA devices. An Enhanced 

Parallel Port (EPP) interface is employed to connect to the fault 
emulator which is embedded in the target FPGA device. Fault 
injection process times reported for each fault are in the range of 
9s and 13s respectively, for different size of FPGA device being 
used. Most of these times, as reported, were spent downloading 
the faulty bitstream, while only a very small fraction actually 
involved fault injection and emulated circuit execution. 

A fault injection tool for SRAM-based FPGAs is presented in 
[5] based on fault emulation. It provides the capability of fault 
injection, in particular to the Programmable Interconnection 
Points (PIPs) by modifying the configuration bitstream, avoiding 
the use of any standard commercial software and their related 
limitations. A hardware-software platform for SEU immunity 
verification targeting Flip-Flops is presented in [11]. The platform 
is based on proprietary software and specific hardware testing 
board, using Xilinx’s Virtex-II FPGAs, thus making it a somewhat 
inflexible solution. Due to the fast communications bus used to 
connect to the testing board (EPP or USB), it is possible to inject 
and analyze at least 80K faults per hour in a system with 2M test 
vectors. In our work we make use of existing hardware for 
minimization of cost. 

 
3. The Fault Emulation Platform 

The fault emulator platform is a mixture of software and 
hardware entities. Care has been taken so that these two worlds 
remain independent as much as possible to allow for changes in 
each one without harmfully affecting the other.  

 
3.1. Software 

The software portion of the fault emulator is based on the JBits 
2.8 API [12][13] and coded in Java. JBits is a collection of classes 
that allow user code to manipulate Virtex/Virtex-II device 
bitstreams. The software portion we developed based on JBits 
consists of about 4,600 lines of user code in Java.  
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Figure 2 Software/Hardware partitioning  

 
Exploiting the portability of Java, our software can be executed 

in any processor hardware platform and operating system. Blocks 
in Figure 2 describe the basic programming entities implemented. 

 The input logic allocation file (.ll) contains the human readable 
report of used resources in the FPGA device such as I/O pins, 
Flip-Flops, BlockRAMs, and their respective symbol names in 
the HDL code (or names assigned by the synthesizer). This file 
is generated by the Xilinx ISE software suite. 

 The input bitstream file (.bit) contains the configuration 
information for the target FPGA device.  

 The input constraints file (.ucf) contains information on 
hierarchical logic module placement and I/O pin assignments 
in standard text format. 



 

    

 The input symbol name list files (.lst) contain the signal names 
of the design Flip-Flops. Such a list is generated by an external 
tool that we developed, using the logic allocation file. One list 
is associated with the monitored Flip-Flops and another one is 
associated with the SEU injection target Flip-Flops. 

 The execution parameters file contains textual representation 
of parameters that instruct the fault emulator on how to 
perform its set of processes. Information contained includes the 
number of clock cycles to run, input files, board and device 
data, and fault injection/detection methods to use. 

 The input script file is used for SEU emulation tests on Flip-
Flops and contains the text commands that instruct the fault 
emulator to inject a SEU in a specific Flip-Flop, at a specific 
point in emulation time. The developed script language is 
capable of introducing SEUs and multiple upsets during a 
Fault Injection Cycle. This file is generated by an external 
utility that we developed, through the use of which the user can 
introduce a number of SEUs on a list of symbols (as described 
above) at user-specified, sequential or random times. 

 The Design Resource Manager is responsible for analyzing the 
input bitstream file, extracting and creating hierarchical 
mappings of used FPGA resources. 

 The LUT Fault List Manager is responsible for extracting 
information on LUT input usage and producing their fault 
vectors in a sorted hierarchical list. The fault list is generated 
exhaustively for all LUTs inside an HDL module defined in the 
execution parameters file or for the entire design. 

 The Flip-Flop Fault List Manager is responsible for parsing 
the input script file and generating a list of the internal 
commands to orchestrate the fault injection in the defined Flip-
Flops at the specified point of execution (emulation) time. 

 The Fault Injection Manager is responsible for sequentially 
injecting a fault from the LUT/Flip-Flop Fault List (depending 
on the type of test) and performs the Fault Injection Cycle. 
After each cycle, the Fault Injection Manager processes the test 
results and determines whether the fault has been detected.  

 The Operations Coordinator controls the flow of procedures 
according to the execution parameters file. 
 

3.2. Hardware 
The hardware portion of the fault emulator is polymorphic. 

Based on JBits, our software can connect to any FPGA board that 
has a standard set of the XHWIF interface [14] implemented. For 
this to be achieved, it is essential that the SelectMAP 
configuration I/O pins on the FPGA device are not used by the 
implemented circuit and reserved for the emulation link. The 
board can be either connected to the local workstation or on a 
remote computer. For our experiments, a XESS XSV800 board 
was used with a Virtex XCV800 device, however any other Virtex 
board could be used as long as the above requirements are met, 
thus allowing the use of available low-cost prototyping boards. 
Though XESS provides its own XHWIF port, it proves to be 
prohibitively slow, with a full device configuration lasting about 
2½ minutes. To achieve better performance at a low-cost from the 
available FPGA board, two new XHWIF ports were implemented. 
In both implementations, the on-board CPLD connecting the 
parallel port and the FPGA had to be reconfigured to support the 
SelectMAP programming port interface. Being our intention to 
provide a board-independent solution, we have not implemented 
any special features that would be inapplicable to other boards. 

The first XHWIF implementation makes use of a direct 
connection to the standard parallel port (SPP) of our host 

computer. Due to the unidirectional nature of the SPP, the 
readback function is performed over the 4bit status pins of the 
port, thus nearly doubling the required data transfer time. In an 
attempt to increase transfer rate, a cost-effective USB approach 
was adopted. An interface converter device was developed around 
an Atmel AVR microcontroller. This device provides a USB 
connection to the host computer and a modified 8bit bidirectional 
port connecting to the FPGA board. The microcontroller was 
programmed to implement a simple communications protocol to 
perform operations such as configuration, readback, reset, and 
clocking of the FPGA. Both XHWIF implementations provide a 
clocking facility of fixed frequency, with the USB outperforming 
the SPP control by an order of magnitude. Comparison of XHWIF 
implementations is given in Table 1. 

 
 XESS SPP USB 
Full Configuration 2½ min 7s 5.8s 
Full Readback  2½ min 13s 6.5s 
Partial Reconf. (1 LUT) 675ms 32ms 26ms 
Download Rate 3.84kB/s 82kB/s 99kB/s 
Upload Rate 3.84kB/s 56kB/s 88kB/s 
Clocking (max freq.) 4kHz 260kHz 2MHz 
Table 1 Comparison between different XHWIF ports 

 
4. Fault Injection and Detection 
4.1. LUT Fault List Extraction and Injection Flow 

To inject a fault, first a fault list needs to be available. Since 
we make use of no external information, we must extract LUT and 
LUT input usage using only the input bitstream file. In 
synthesized circuits, it is possible that some of the LUT inputs are 
not used for the implemented function; we avoid injecting faults in 
unused LUT bits since their presence does not interfere with the 
implemented logic function of the LUT.  

 

Fault Free
A2 and A1 used

Faulty
Detectable

Faulty
Not Detectable

LUT bits
0: 0001
4: 0001
8: 1001

12: 0001

LUT bits
A1
A2
A3
A4

0: 0001
4: 0001
8: 0001

12: 0001

LUT bits
0: 0001
4: 0001
8: 0001

12: 1001

 
Figure 3 SEU in used and unused LUT bit positions 

 
If a fault is injected in an unused bit position due to the 

connected LUT inputs, though the fault is present, it does not 
affect the output of the LUT (Figure 3). The implemented function 
will remain the same, though a fault is present. To determine 
which of the four inputs are being used, we analyze the 16-bit 
LUT vector, as illustrated in Figure 4. First we transfer the fault 
free LUT vector in a 4x4 Karnaugh map; by looking at 
relationships between certain bit positions we can identify which 
of the four inputs of the LUT are being used. Consider the 16-bit 
vector as Labcd, where a, b, c and d are the LUT inputs (A4, A3, 
A2 and A1 respectively). Assigning logic values to the LUT 
inputs, a bit value is returned, e.g. for L1011 the 12th bit of the LUT 
vector is returned. When the implemented logic function does not 
make use of all four inputs, only a small set of the 16-bit LUT 
vector is used (shaded grey in Figure 3). Any unused inputs are 
tied to Vcc. The unused section is an identical copy of the used one 
(see fault free LUT in Figure 3), which we will call mirror image. 
For u number of unused inputs, there will be 2u-1 mirror images. 
Symbolically this is represented as L0000→L0111 being respectively 
equal to L1000→L1111 when input a (A4) is not used. 
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Figure 4 Identifying unused inputs using Karnaugh maps 
 
The synthesis tools are responsible for these assignments, 

which we exploit to identify the used LUT inputs. From Figure 4, 
all equality relationships marked with arrows between bit-
positions must be satisfied to safely deduce that the corresponding 
input is not used (mirror image identification).  

Using the Binary Decision Tree (BDT) of Figure 7 we identify 
the LUT bits participating in the fault injection process. This BDT 
is derived from the described mirror image assignments. We have 
encoded the tree so that the left hand side signifies an unused 
input bit (1), and the right-hand side signifies a used input bit (X). 
Fault emulation is a fairly simple sequential process; a Fault 
Injection Cycle consists of the steps depicted in Figure 5. Using 
the same algorithm, single or multiple upsets can be injected. 

 
Configure device with original bitstream; 
Pulse Clock N times; 
FFR=test responses from fault free device; 
A: For (L=0; L<#LUTs; L++) do 

 LV ← fault free LUT vector of LUT L; 
 B: For (V=0; V<#Faulty_Vectors; V++) do 
  Pulse Circuit Reset; 

  FV ← Fault_Vector_List[L][V]; 
  Pulse Clock N times; 

  TR ← test responses from device; 
  If (TR==FFR) then Fault_Detected ←false; 

  Else Fault Detected ←true; 
 End loop B; 
 Inject LV in LUT L; 
End loop A; 

Figure 5 LUT Fault injection cycle algorithm 

4.2. Flip-Flop SEU Fault List Generation and 
Injection Flow 

Fault emulation of SEUs in Flip-Flops unlike in the case of 
LUTs is a complex and time consuming process since the Virtex 
architecture is not designed to support direct manipulation of 
individual Flip-Flops; a simplified logic circuit of a CLB Slice 
Flip-Flop is given in Figure 6. 

As in [8], in order for a Flip-Flop’s state to be assigned a 
desired value, first the Set/Reset switch of every used Flip-Flop in 
the FPGA needs to be changed to represent the current logic state 
of the Flip-Flop. The S/R switch of the Flip-Flop to be injected 
with a SEU must carry the inverse value of the Flip-Flop’s state 
(bit flip). Next, the circuit’s RESET pin or the Global Set/Reset 
(GSR) internal signal must be pulsed to force the new reset values.  
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Figure 6 Set/Reset Simplified Circuit of a CLB Flip-Flop 
 
The process of injecting a SEU in a CLB Flip-Flop requires 

one readback and one reconfiguration phase. Additionally, in 
order to recover from the injected SEU a reconfiguration phase is 
required that will revert the SR switches to their original full-
configuration bitstream state.  

A Fault Injection Cycle consists of the steps depicted in Figure 
8. Using the same algorithm, single or multiple upsets can be 
injected. 

 
Configure device with original bitstream; 
Readback Flip-Flop Original Start-Up State; 
Pulse Clock Until Fault Injection Cycle End; 
FFR=test responses from fault free device; 
A: For (S=0; S<#Flip-Flop Sites; S++) do 

Pulse Circuit Reset; 
Pulse Clock Until Injection Time; 
Readback State of All Flip-Flops; 
Change S/R Switches of All FFs to match State; 
Invert S/R Switch of Target Flip-Flop; 
Pulse Circuit Reset or GSR; 
Pulse Clock Until Fault Injection Cycle End; 

TR ← test responses from device; 
If (TR==FFR) then Fault_Detected ←false; 

Else Fault Detected ←true; 
Change S/R Switches of All FFs to Original 
Start-Up State; 

End loop A; 

Figure 8 Design Flip-Flop Fault injection cycle algorithm 
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Figure 7 Binary Decision Tree for selecting LUT used bit positions 



 

    

The time required to reconfigure the population of Flip-Flops 
is dependent on their dispersion on the device, due to the 
organization of the Virtex architecture in frames [15], as well as 
the number of S/R switches that need to be reconfigured. To allow 
for faster reconfiguration/readback, the registers in the circuit 
should be confined within the smallest amount of CLB columns, 
thus minimizing the number of frames to be read back from the 
device or reconfigured. A change in future FPGA architectures 
addressing the described problem would provide the means for 
faster emulation processes. 

 
4.3. Supported Fault Detection Scenarios 

In this section we provide five possible fault detection 
scenarios supported by our fault emulator platform, each 
applicable to different type of design under test (DUT) 
implementation, as follows. The authors of this paper simply 
provide examples of use for the proposed fault emulation 
platform.  
1. The Memory Resident scenario. This scenario is applicable to 

a class of DUTs that store their responses in BlockRAM. 
Thus, in this scenario (Figure 9a), the configuration bitstream 
contains the DUT, any user-defined TPG and control logic 
circuit, and sufficient amount of BlockRAM. The TPG 
produces the test patterns (by means of pseudorandom or 
deterministic hardware) that are fed to the DUT and the output 
of the circuit is stored in BlockRAM. An entire test is run for a 
defined number of patterns with a fault-free DUT. The test 
responses are read back from the BlockRAM and stored in the 
host computer’s memory. Then, for each fault in the list being 
injected to the DUT, the test responses are read back and 
compared to those of the fault-free DUT (Figure 5). The 
software supports the “no fault dropping” attribute for 
diagnosis. At the beginning of each fault injection cycle, the 
BlockRAM needs to be erased to protect from erroneous 
results already residing in BlockRAM. This scenario is very 
time consuming in hardware since for each fault injection 
cycle it requires two partial reconfigurations (one to erase all 
BlockRAM cells used and one to inject the fault), and a partial 
readback of the used BlockRAM columns. However, this 
scenario allows for extensive investigation on the impact of 
each test pattern applied as input to the DUT. At the end of the 
emulation process, a list of each fault injected and the list of 
patterns detecting it is generated.  

2. The Golden Memory Responses scenario. This is a modified 
version of the Memory Resident scenario for speed increase 
(Figure 9b) applicable to the same class of DUTs. The fault-
free circuit will store its responses in BlockRAM and any 
subsequent fault injection cycles will only compare the 
responses of the DUT to the ones already stored in 
BlockRAM. An output pin will assert to indicate that a fault 
has been detected. The host computer can record the clock 
cycle at which the signal is asserted and stop the test 
prematurely. In this scenario, no BlockRAM configuration 
and readback is performed for each fault injection cycle. Since 

clocking is stopped as soon as the first faulty response is 
detected (premature fault injection cycle termination), this 
scenario is extremely fast.  

3. The Hardware Redundancy scenario. This scenario is 
applicable to designs with duplication. The Golden DUT 
(GDUT) provides the fault-free test responses, while the 
Target DUT (TDUT) is injected with faults. A comparator is 
connected to the primary outputs of both DUTs to indicate the 
detection of a fault (Figure 9d). In terms of speed this scenario 
is equivalent to the Golden Memory Results scenario, without 
the need for the initial fault-free circuit execution of the latter. 
Premature fault injection cycle termination is supported. 

4. The Built-In Self-Test (BIST) scenario. This scenario is 
applicable to a class of DUTs that are integrated with BIST 
circuits asserting an output signal to indicate the detection of a 
fault (Figure 9d). There is no requirement for BlockRAM 
reconfiguration/ readback which transfer large amounts of 
data between the host computer and the FPGA, as in the 
Memory Resident scenario; and since injecting a fault requires 
transferring a very small amount of data, this scenario is 
considerably faster than the previous two scenarios. Premature 
fault injection cycle termination is supported. 

5. The Register State scenario. This scenario is applicable to a 
class of DUTs that store their responses in distributed Flip-
Flops. In this scenario (Figure 9e) we assume that any injected 
fault will eventually appear in the Flip-Flops of the DUT. 
After executing a fault injection cycle, the state of the DUT’s 
registers, or a small subset of these, is read back by the fault 
emulator and compared to that of the fault-free circuit. Besides 
fault injection (one partial reconfiguration), a series of partial 
read backs is required (according to the dispersion of Flip-
Flops in the device, as mentioned previously). This scenario 
can be considerably slower than the BIST scenario, yet faster 
than the Memory Resident scenario depending on the number 
and topology of Flip-Flops used (restricted within the 
minimum possible amount of CLB columns). If full readback 
is required or dispersion is extensive, this scenario is slower 
than the Memory Resident scenario. 
In all scenarios, the user can choose to inject faults in specific 

areas/ modules of the FPGA or in the entire implemented design, 
thus including any BIST circuit. 

 
5. Experimental Results 
5.1. LUT SEU Injection Experiments 

For the LUT SEU investigation, several experiments were 
performed. A set of tests using the time consuming Memory 
Resident scenario (Figure 9a) were performed on a behavioral 
model of a 32x32 bit non-pipelined multiplier which was 
synthesized using the Xilinx Synthesis Tool (XST). This scenario 
was chosen to allow for the maximum level of observability in the 
circuit’s test results and allow for direct comparison of our 
developed XHWIF ports with the VirtexDS simulator. The Golden 
Memory Responses, Hardware Redundancy and Built-In Self-Test 

DUT
with
BIS T

Contro l Log ic

DUT
T
P
G

(d) (e )

Contro l Log ic

T
P
G

R
A
M

F
P
G
A

T
P
G

=

R
A
M

(b)(a)

DUT

Control Log ic

DUT F ault

vo
te

r

(c)

DUT

DUT

DUT

T
P
G

F ault

Fault

 
Figure 9 Supported fault detection scenarios 



 

    

scenarios would have been difficult to use for comparison 
purposes since VirtexDS would not allow the monitoring of 
combinational signal outputs. Furthermore, the Memory Resident 
scenario is a good metric for the effect of a slow communications 
bus in the injection process, which for the other scenarios would 
not be easily recognizable.  

The TPG circuit used to feed the inputs of the multiplier is a 
64bit maximal length LFSR. We made use of an FSM test 
controller requiring two clock cycles per test pattern. The 64bit 
result from the multiplier is stored in BlockRAM on the second 
clock cycle. After N number of clock pulses, N/2 patterns have 
been applied and their results stored. Three different sets of results 
were captured, one using VirtexDS and two using our XHWIF 
implementations (SPP and USB). Average times per fault 
injection cycle were measured (time measurements include 
BlockRAM erasure, fault injection, circuit clocking, BlockRAM 
readback and comparison with fault-free circuit responses).  

As expected from a software simulator, VirtexDS did not scale 
well with increasing number of circuit execution clock cycles 
(Table 2). Contrary to VirtexDS where most time is spent in 
simulated circuit execution, the use of FPGA hardware emulation 
spends most of its time in communicating reconfiguration data to 
the FPGA. As seen through our experiments, hardware fault 
emulation achieved a speed-up of up to 53.55 times over fault 
simulation when using SPP. When the faster USB port was used a 
speed-up of up to 221.14 times was achieved. 

 
LUTs=1189, 

Fault Locations=10297 VirtexDS SPP 
XHWIF 

USB 
XHWIF 

Patterns Fault 
Coverage 

Test 
Time/Fault (s) 

Speed 
Increase 

Speed 
Increase 

64 93.95% 18.3 8.71 42.56 
100 98.68% 25 11.90 55.19 
128 99.12% 30 14.29 62.76 
256 99.14% *59 27.96 121.40 
512 99.14% *113 53.55 221.14 

* average time estimated for 100 fault injection cycles 
Table 2 LUT SEU injection experimental results 

 
Use of any hardware-based fault detection scenario which 

removes the need for redundant data transfers dramatically 
decreases the required amount of time per fault injection cycle. In 
Table 3, times spent per operation in the Memory Resident 
scenario are analyzed. The above times are complemented with 
delays introduced by communications bus overhead, software 
comparison processing and Java code execution. It is apparent, 
that a faster configuration/readback facility would allow for faster 
fault injection cycles using the same scenario. Clocking the design 
does not contribute as much to the overall time as the other 
factors, while more than 85% of total fault injection cycle time is 
spent in BlockRAM read and write operations. 

 
Hardware Operation Time Spent (%) 
Erase BlockRAM 40,2 
LUT Fault Injection 7,2 
Execution 0,1 
Upload BlockRAM 45,2 
LUT Fault Scrubbing 7,2 

Table 3 Times per operation in Memory Resident scenario 
 
Comparing fault injection cycle times for few clock cycles 

gives a fair impression of the speed-up imposed by the use of 
hardware. At higher numbers of executed clock cycles, the 

advantage of fault emulation is far more evident with a speed 
increase of two orders of magnitude. Compared to the work of [8], 
we have allowed an average speed increase of 39 times in full 
device configuration using the same FPGA board when using the 
faster USB XHWIF implementation. This was made possible due 
to the faster communications bus which allows for faster device 
reconfiguration and readback, as well as the higher frequency of 
the system clock used to clock the FPGA. 

When hardware based fault detection scenarios were used with 
the USB XHWIF port, we experienced a maximum fault injection 
cycle of 50ms, with two LUT reconfiguration steps and one 
execution phase with fault injection cycle prematurely ending as 
soon as the fault is detected. Therefore, in realistic fault emulation 
experiments the use of hardware-based fault detection (Golden 
Memory Responses, Hardware Redundancy and Built-In Self-Test 
scenarios) would be of much more practical value. 

 
5.2. Flip-Flop SEU Injection Experiments 

For the Flip-Flop SEU investigation, a set of experiments were 
performed using the Register State scenario. The DUT used was a 
32x32bit 4-stage pipelined multiplier generated by Xilinx’s CORE 
Generator 6.2. Both inputs of the multiplier were connected to a 
64bit maximal length LFSR, also generated using CORE 
Generator. The multiplier output was connected to a 64bit 
maximal length MISR. An injection target symbol list file (.lst) 
was created to include all Flip-Flop symbols used by the 
multiplier. Another symbol list file was created to include the 
MISR Flip-Flops, which the fault emulator would monitor for test 
results. The fault injection point in time for each Flip-Flop was 
randomly chosen by the script generator utility limited within the 
range of clock cycles per Fault Injection Cycle. All modules were 
constrained inside an area of 17 successive CLB columns, with 
module hierarchy preserved and each module occupying: LFSR (2 
columns), multiplier (14 columns) and MISR (1 column). The 
MISR Flip-Flops were intentionally placed within one column to 
allow for faster access to the monitored Flip-Flop values. A total 
of 1,232 Flip-Flops were used by the implemented circuit, out of 
which, 128 were utilized by the LFSR and MISR modules, and the 
remaining 1,104 utilized by the multiplier. All experiments 
resulted in 100% fault coverage.  

 
1,104 

Flip- Flops VirtexDS SPP 
XHWIF 

USB 
XHWIF 

Patterns Test 
Time/Fault (s) 

Speed 
Increase 

Speed 
Increase 

64 9.48 1.75 4.10 
128 10.65 1.96 4.59 
256 13.25 2.44 5.71 
512 18.26 3.35 7.87 
1024 28.07 5.08 11.90 
2048 *44.30 7.88 18.47 
65536 *1235.40 204.30 467.95 
* average time estimated for 20 fault injection cycles 

Table 4 Flip-Flop SEU injection experimental results 
 
As seen from the numerical results in Table 4, VirtexDS scales 

extremely poorly with increasing number of simulated circuit 
execution cycles. It is evident that processor intensive simulation 
of a few thousands or tens of thousands clock cycles for large 
sequential circuits would be impractical. For 64 test patterns 
applied to the DUT, the SPP XHWIF port achieves an average 
speed increase of 1.75 times over VirtexDS, while the USB 



 

    

XHWIF port is 4.1 times faster than VirtexDS. For 65,536 test 
patterns, the SPP XHWIF port achieves a speed increase of 204.3 
times, while the USB XHWIF port an increase of 467.95 times 
over VirtexDS. A speed increase of three orders of magnitude is 
practically achieved when transferring from simulation to 
emulation experiments. With larger circuit designs and higher 
number of test patterns, an even higher speed increase is 
achievable. 

In each measurement taken using hardware emulation, 50-60% 
of the test time is spent in Flip-Flop state readback prior to fault 
injection. This step is extremely time-consuming since the state of 
all used Flip-Flops must be recorded in order to decide which S/R 
switches need to be reconfigured to an inverted value. However, 
this decision step allows for shorter reconfiguration times. Higher 
test speed performance from the USB XHWIF port is attributed to 
the higher upload transfer rate, compared to that of the SPP port 
(nearly twice as fast). Clocking the design has little impact on test 
time per fault. It is evident that much time is spent in 
communicating reconfiguration and readback data, thus for 
accelerated emulation experiments it is imperative that a fast 
communication bus is employed.  

 
6. Conclusions 

In this paper we have presented a low-cost FPGA fault 
emulator platform that efficiently performs emulation experiments 
for evaluation of fault detection and test pattern generation 
techniques, without the need for expensive and harmful radiation 
tests or custom hardware. Any Virtex-based FPGA board can be 
employed without the need for modifications in the software 
portion. The only requirement is that an XHWIF interface port for 
the board, using the SelectMAP configuration port, is available or 
developed. 

We have targeted our work in SEU faults affecting the LUT 
configuration bits as well as the design Flip-Flops. A set of five 
supported non-intrusive fault detection scenarios was presented 
for researchers and test engineers to evaluate for use with their 
applications. We have compared a software simulator and two 
low-cost hardware implementations with slightly different features 
based on the same FPGA device and development board. We have 
also compared fault coverage, fault simulation (using VirtexDS) 
and fault emulation times for combinational circuits, as well as for 
sequential circuits. A speed increase of two orders of magnitude 
has been witnessed for combinational circuits when comparing 
fault emulation to fault simulation. Moreover, a speed increase of 
three orders of magnitude was experienced with sequential 
circuits. A minimum Fault Injection Cycle duration of 50ms per 
fault in LUT configuration bits was experienced when using our 
faster supported scenarios. It has become evident that the 
transition from a fault simulator to a fault emulator environment 
shifts the problem space from that of processing power to that of 
communications bandwidth. 

In future works we will attempt to include more configuration 
bits in the fault injection process. Routing is the best candidate 
since it constitutes the majority of bits in the configuration 
bitstream.  
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