

A Low-Cost SEU Fault Emulation Platform for SRAM-Based FPGAs

P. Kenterlis, N. Kranitis, A. Paschalis
Department of Informatics & Telecommunications

University of Athens, Greece
{pkent, nkran, paschali}@di.uoa.gr

D. Gizopoulos, M. Psarakis
Department of Informatics

University of Piraeus, Greece
{dgizop, mpsarak}@unipi.gr

Abstract

In this paper, we introduce a fully automated low cost
hardware/software platform for efficiently performing fault
emulation experiments targeting SEUs in the configuration bits of
FPGA devices, without the need for expensive radiation
experiments. We propose a method for significantly reducing the
fault list by removing the faults on unused LUT bit positions. We
also target the design Flip-Flops found in the Configurable Logic
Blocks (CLBs) inside the FPGA. Run-time reconfigurability of
Virtex devices using JBits is exploited to provide the means not
only for fault injection but fault detection as well. First, we
consider five possible application scenarios for evaluating
different self-test schemes. Then, we apply the least favorite and
most time consuming of these scenarios on two 32x32 multiplier
designs, demonstrating that transferring the simulation processing
workload to FPGA hardware can allow for acceleration of
simulation time of more than two orders of magnitude.

1. Introduction

Moving to Very Deep Sub Micron (VDSM) technology, chips
become increasingly prone to faulty behavior caused by cosmic or
artificial radiation. Such faults are modeled as Single Event
Upsets (SEUs) in the form of bit-flips [1]. SRAM-based FPGA
devices are steadily becoming the most suitable platform for
implementing modern system applications due to their high
reconfigurability, low cost and availability, which promote fast
time-to-market. SRAM-based FPGAs, however, are much more
susceptible to SEUs than ASICs. Recently, SEU effects on
SRAM-based FPGA resources has been a field of research [1],
[2], [3], [4], [5]. When dealing with SEUs in SRAM-based
FPGAs, two types of fault locations need to be considered:

1. Upsets in the Flip-Flops in the form of a bit-flip.
2. Upsets in the configuration bits that control the

combinational and sequential logic (Look-Up Tables,
MUXes, Flip-Flop initialization bits) and routing.

Ionizing radiation hitting a design Flip-Flop or one of its
control signal inputs can invert its stored logic value. These upsets
could be harmful if allowed to propagate through states at the rest
of the circuit. For example, in the case of FSM state registers
where feedback is present, the effect of the upset could be
detrimental to the system’s operation.

Furthermore, a SEU can “permanently” change the function of
the configured circuit by hitting a configuration SRAM cell. For
example (Figure 1), ionizing radiation hitting a LUT configuration
bit will change the output function to represent another logic gate
(or set of gates). No actual permanent damage is inflicted upon the
device since after power cycling the FPGA board, a fresh copy of
the configuration bitstream will be loaded from the external
configuration memory to the FPGA device and eradicate the fault.

0

0

0

1

1

0

0

1

Fault Free
LUT

Faulty
LUT

Figure 1 Effect of a SEU in a LUT

When designing circuits to be implemented in FPGAs, it is

unrealistic to consider structural fault models, i.e. stuck-at,
transition faults, since FPGAs do not have a gate level
representation for which such faults can be modeled. For example,
in Figure 1 we show that a SEU changes an AND gate to a XNOR
gate. In SRAM-based FPGAs, individual memory cells control the
configuration of CLB and routing resources to implement the
designed circuit. Attempting to model LUTs as equivalent gate
circuits and inject stuck-at faults will not address the effect of
SEUs which are the dominant faults in FPGAs. Existing fault
simulators employ structural fault models which are not applicable
to FPGAs affected by SEUs.

An alternative method to emulate the effects of SEUs is to
employ functional simulators of the FPGA devices. However,
FPGA fault simulation of large circuits even when performed by
multi-GHz workstations requires a vast amount of processing
time. When dealing with large system applications the required
simulation time becomes prohibitive. Currently, VirtexDS [6]
designed by Xilinx is a software device simulator that can be used
in order to simulate the functions of FPGA devices, more
specifically Xilinx’s Virtex series.

By transferring the simulation process of combinational
circuits to actual hardware, a speed-up of two orders of magnitude
has been indicated over software simulation [7]. For large
sequential circuits and long test patterns, due to complexity, we
can expect higher performance increases from hardware
emulation. Besides, by building hardware emulation capabilities in
a prototype board of the developed system with all its peripheral
circuitry, it is technically realizable to emulate the effects of SEUs
in a prototype as these would appear during in-field operation.

Software simulation introduces outstanding time cost, while
radiation experiments designed to introduce SEUs in SRAM-
based FPGA devices under operation are expensive in terms of
equipment used. In addition, radiation is harmful to the FPGA
device itself. A non-destructive, non-intrusive fault emulation
platform addressing the effects of SEUs in FPGAs is becoming
increasingly challenging.

The same technology feature that makes SRAM-based FPGAs
vulnerable to SEUs can also be used to develop techniques that
detect and correct the effects of SEUs; Run-Time Reconfiguration
(RTR), i.e. reconfiguration of the system during normal operation
in order to perform a different function. RTR comes in two
variants, full and partial. Partial RTR allows small portions of the
FPGA’s configuration memory to be altered using small partial

bitstreams. Partial RTR is used to perform minor changes in the
configured circuit on the FPGA, accelerating the fault injection
process required in our work. VirtexDS supports full and partial
RTR operations. We utilize VirtexDS as a fault simulator by
changing the configuration memory and using partial RTR to
compare with the proposed fault emulation platform.

In this paper we concentrate our interest in the investigation of
SEUs in the device configuration bits and user design registers.
More specifically, we focus on the faults affecting the used LUT
configuration bits of CLB Function Generators and CLB Flip-
Flops used by the implemented circuit. As reported in previous
works (e.g. [7]), the faults affecting only the LUT configuration
bits can be considered as an effective sampling technique. As
demonstrated through radiation experiments [3] the LUTs are the
most SEU sensitive resources of the device; not only directly by
SEUs affecting the LUT configuration bits, but also indirectly,
with particles affecting other resources of the device, for example,
affecting the LUT write enable line may induce corruptions to all
bits in one LUT. We regard the 4-input LUT as a 16-bit vector for
which SEUs can occur and alter the implemented function so as to
represent an entirely different circuit.

In this paper, a fully automated low cost hardware/software
fault emulator platform usable with any Virtex-based board is
presented. Selection of board is limited only by the availability of
the SelectMAP programming port pins to the user, thus allowing
the use of low cost prototyping or evaluation boards. Also,
algorithms used for LUT and Flip-Flop fault list extraction and
fault injection are presented. A method for significantly reducing
the fault list by removing the faults on unused LUT bit positions is
proposed. Then, five possible scenarios for fault injection and
detection on different types of implemented circuits supported by
our fault emulator are described. Finally, experimental results
using the implemented fault emulator on two 32x32 multipliers,
with and without pipelining, are exhibited, demonstrating that a
speed increase of two orders of magnitude is achieved in the case
of combinational circuits, while a speed increase of two orders of
magnitude is achieved for sequential circuit designs.

2. Previous Work

Fault injection by radiation exposure has been investigated in
[3] targeting FPGA configuration bits aiming to characterize the
sensitivity of the configuration memory to SEUs. A simulation-
based fault injection tool is presented for calculating the
implemented circuit error rate. An FPGA SEU simulator platform
to represent radiation induced configuration bitstream upsets was
presented in [4] based on a Virtex FPGA board. The SEU
simulator predicted 97% of the output errors observed during
radiation testing experiments, thus provided an affordable
platform to explore costs and benefits of various SEU mitigation
techniques. A fault injection environment was proposed in [2] as
an alternative to radiation testing experiments. Publicly available
software by Xilinx, JBits, was used for accessing, analyzing and
modifying configuration memory resources, while VirtexDS was
used to simulate the FPGA device performing fault injection
experiments. Experimental results were provided using functional
test vectors and fault injection in a random fault list of ITC99
benchmarks. Since VirtexDS is a software device simulator, the
fault injection environment is highly CPU-time consuming and
not practical for large designs.

In [9], [10], a software/hardware fault injection platform is
presented that allows direct manipulation of the configuration
bitstream on Xilinx’s Spartan2 FPGA devices. An Enhanced

Parallel Port (EPP) interface is employed to connect to the fault
emulator which is embedded in the target FPGA device. Fault
injection process times reported for each fault are in the range of
9s and 13s respectively, for different size of FPGA device being
used. Most of these times, as reported, were spent downloading
the faulty bitstream, while only a very small fraction actually
involved fault injection and emulated circuit execution.

A fault injection tool for SRAM-based FPGAs is presented in
[5] based on fault emulation. It provides the capability of fault
injection, in particular to the Programmable Interconnection
Points (PIPs) by modifying the configuration bitstream, avoiding
the use of any standard commercial software and their related
limitations. A hardware-software platform for SEU immunity
verification targeting Flip-Flops is presented in [11]. The platform
is based on proprietary software and specific hardware testing
board, using Xilinx’s Virtex-II FPGAs, thus making it a somewhat
inflexible solution. Due to the fast communications bus used to
connect to the testing board (EPP or USB), it is possible to inject
and analyze at least 80K faults per hour in a system with 2M test
vectors. In our work we make use of existing hardware for
minimization of cost.

3. The Fault Emulation Platform

The fault emulator platform is a mixture of software and
hardware entities. Care has been taken so that these two worlds
remain independent as much as possible to allow for changes in
each one without harmfully affecting the other.

3.1. Software

The software portion of the fault emulator is based on the JBits
2.8 API [12][13] and coded in Java. JBits is a collection of classes
that allow user code to manipulate Virtex/Virtex-II device
bitstreams. The software portion we developed based on JBits
consists of about 4,600 lines of user code in Java.

Fault Injection Manager

X
H
W
I
FFlip-Flop Fault

List Manager

Design Resource Manager
CLB (LUTs, FFs, Carry Chains),

BRAMs, IOBs

Operations Coordinator

.bit

.ucf

Script
file

Hardware
Board

.lst

Execution
Parameters

LUT Fault List
Manager

JBits API

.ll

Figure 2 Software/Hardware partitioning

Exploiting the portability of Java, our software can be executed

in any processor hardware platform and operating system. Blocks
in Figure 2 describe the basic programming entities implemented.

 The input logic allocation file (.ll) contains the human readable
report of used resources in the FPGA device such as I/O pins,
Flip-Flops, BlockRAMs, and their respective symbol names in
the HDL code (or names assigned by the synthesizer). This file
is generated by the Xilinx ISE software suite.

 The input bitstream file (.bit) contains the configuration
information for the target FPGA device.

 The input constraints file (.ucf) contains information on
hierarchical logic module placement and I/O pin assignments
in standard text format.

 The input symbol name list files (.lst) contain the signal names
of the design Flip-Flops. Such a list is generated by an external
tool that we developed, using the logic allocation file. One list
is associated with the monitored Flip-Flops and another one is
associated with the SEU injection target Flip-Flops.

 The execution parameters file contains textual representation
of parameters that instruct the fault emulator on how to
perform its set of processes. Information contained includes the
number of clock cycles to run, input files, board and device
data, and fault injection/detection methods to use.

 The input script file is used for SEU emulation tests on Flip-
Flops and contains the text commands that instruct the fault
emulator to inject a SEU in a specific Flip-Flop, at a specific
point in emulation time. The developed script language is
capable of introducing SEUs and multiple upsets during a
Fault Injection Cycle. This file is generated by an external
utility that we developed, through the use of which the user can
introduce a number of SEUs on a list of symbols (as described
above) at user-specified, sequential or random times.

 The Design Resource Manager is responsible for analyzing the
input bitstream file, extracting and creating hierarchical
mappings of used FPGA resources.

 The LUT Fault List Manager is responsible for extracting
information on LUT input usage and producing their fault
vectors in a sorted hierarchical list. The fault list is generated
exhaustively for all LUTs inside an HDL module defined in the
execution parameters file or for the entire design.

 The Flip-Flop Fault List Manager is responsible for parsing
the input script file and generating a list of the internal
commands to orchestrate the fault injection in the defined Flip-
Flops at the specified point of execution (emulation) time.

 The Fault Injection Manager is responsible for sequentially
injecting a fault from the LUT/Flip-Flop Fault List (depending
on the type of test) and performs the Fault Injection Cycle.
After each cycle, the Fault Injection Manager processes the test
results and determines whether the fault has been detected.

 The Operations Coordinator controls the flow of procedures
according to the execution parameters file.

3.2. Hardware
The hardware portion of the fault emulator is polymorphic.

Based on JBits, our software can connect to any FPGA board that
has a standard set of the XHWIF interface [14] implemented. For
this to be achieved, it is essential that the SelectMAP
configuration I/O pins on the FPGA device are not used by the
implemented circuit and reserved for the emulation link. The
board can be either connected to the local workstation or on a
remote computer. For our experiments, a XESS XSV800 board
was used with a Virtex XCV800 device, however any other Virtex
board could be used as long as the above requirements are met,
thus allowing the use of available low-cost prototyping boards.
Though XESS provides its own XHWIF port, it proves to be
prohibitively slow, with a full device configuration lasting about
2½ minutes. To achieve better performance at a low-cost from the
available FPGA board, two new XHWIF ports were implemented.
In both implementations, the on-board CPLD connecting the
parallel port and the FPGA had to be reconfigured to support the
SelectMAP programming port interface. Being our intention to
provide a board-independent solution, we have not implemented
any special features that would be inapplicable to other boards.

The first XHWIF implementation makes use of a direct
connection to the standard parallel port (SPP) of our host

computer. Due to the unidirectional nature of the SPP, the
readback function is performed over the 4bit status pins of the
port, thus nearly doubling the required data transfer time. In an
attempt to increase transfer rate, a cost-effective USB approach
was adopted. An interface converter device was developed around
an Atmel AVR microcontroller. This device provides a USB
connection to the host computer and a modified 8bit bidirectional
port connecting to the FPGA board. The microcontroller was
programmed to implement a simple communications protocol to
perform operations such as configuration, readback, reset, and
clocking of the FPGA. Both XHWIF implementations provide a
clocking facility of fixed frequency, with the USB outperforming
the SPP control by an order of magnitude. Comparison of XHWIF
implementations is given in Table 1.

 XESS SPP USB
Full Configuration 2½ min 7s 5.8s
Full Readback 2½ min 13s 6.5s
Partial Reconf. (1 LUT) 675ms 32ms 26ms
Download Rate 3.84kB/s 82kB/s 99kB/s
Upload Rate 3.84kB/s 56kB/s 88kB/s
Clocking (max freq.) 4kHz 260kHz 2MHz
Table 1 Comparison between different XHWIF ports

4. Fault Injection and Detection
4.1. LUT Fault List Extraction and Injection Flow

To inject a fault, first a fault list needs to be available. Since
we make use of no external information, we must extract LUT and
LUT input usage using only the input bitstream file. In
synthesized circuits, it is possible that some of the LUT inputs are
not used for the implemented function; we avoid injecting faults in
unused LUT bits since their presence does not interfere with the
implemented logic function of the LUT.

Fault Free
A2 and A1 used

Faulty
Detectable

Faulty
Not Detectable

LUT bits
0: 0001
4: 0001
8: 1001

12: 0001

LUT bits
A1
A2
A3
A4

0: 0001
4: 0001
8: 0001

12: 0001

LUT bits
0: 0001
4: 0001
8: 0001

12: 1001

Figure 3 SEU in used and unused LUT bit positions

If a fault is injected in an unused bit position due to the

connected LUT inputs, though the fault is present, it does not
affect the output of the LUT (Figure 3). The implemented function
will remain the same, though a fault is present. To determine
which of the four inputs are being used, we analyze the 16-bit
LUT vector, as illustrated in Figure 4. First we transfer the fault
free LUT vector in a 4x4 Karnaugh map; by looking at
relationships between certain bit positions we can identify which
of the four inputs of the LUT are being used. Consider the 16-bit
vector as Labcd, where a, b, c and d are the LUT inputs (A4, A3,
A2 and A1 respectively). Assigning logic values to the LUT
inputs, a bit value is returned, e.g. for L1011 the 12th bit of the LUT
vector is returned. When the implemented logic function does not
make use of all four inputs, only a small set of the 16-bit LUT
vector is used (shaded grey in Figure 3). Any unused inputs are
tied to Vcc. The unused section is an identical copy of the used one
(see fault free LUT in Figure 3), which we will call mirror image.
For u number of unused inputs, there will be 2u-1 mirror images.
Symbolically this is represented as L0000→L0111 being respectively
equal to L1000→L1111 when input a (A4) is not used.

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

/A4/A3

/A2 /A1

/A2 A1

A2 A1

A2 /A1

A4 input removal conditions A3 input removal conditions

A1 input removal conditionsA2 input removal conditions

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

/A2 /A1

/A2 A1

A2 A1

A2 /A1

/A2 /A1

/A2 A1

A2 A1

A2 /A1

/A2 /A1

/A2 A1

A2 /A1

A2 A1

/A4A3 A4A3 A4/A3 /A4/A3 /A4A3 A4A3 A4/A3

/A4/A3 /A4A3 A4A3 A4/A3 /A4/A3 /A4A3 A4A3 A4/A3

Figure 4 Identifying unused inputs using Karnaugh maps

The synthesis tools are responsible for these assignments,

which we exploit to identify the used LUT inputs. From Figure 4,
all equality relationships marked with arrows between bit-
positions must be satisfied to safely deduce that the corresponding
input is not used (mirror image identification).

Using the Binary Decision Tree (BDT) of Figure 7 we identify
the LUT bits participating in the fault injection process. This BDT
is derived from the described mirror image assignments. We have
encoded the tree so that the left hand side signifies an unused
input bit (1), and the right-hand side signifies a used input bit (X).
Fault emulation is a fairly simple sequential process; a Fault
Injection Cycle consists of the steps depicted in Figure 5. Using
the same algorithm, single or multiple upsets can be injected.

Configure device with original bitstream;
Pulse Clock N times;
FFR=test responses from fault free device;
A: For (L=0; L<#LUTs; L++) do

 LV ← fault free LUT vector of LUT L;
 B: For (V=0; V<#Faulty_Vectors; V++) do
 Pulse Circuit Reset;

 FV ← Fault_Vector_List[L][V];
 Pulse Clock N times;

 TR ← test responses from device;
 If (TR==FFR) then Fault_Detected ←false;

 Else Fault Detected ←true;
 End loop B;
 Inject LV in LUT L;
End loop A;

Figure 5 LUT Fault injection cycle algorithm

4.2. Flip-Flop SEU Fault List Generation and
Injection Flow

Fault emulation of SEUs in Flip-Flops unlike in the case of
LUTs is a complex and time consuming process since the Virtex
architecture is not designed to support direct manipulation of
individual Flip-Flops; a simplified logic circuit of a CLB Slice
Flip-Flop is given in Figure 6.

As in [8], in order for a Flip-Flop’s state to be assigned a
desired value, first the Set/Reset switch of every used Flip-Flop in
the FPGA needs to be changed to represent the current logic state
of the Flip-Flop. The S/R switch of the Flip-Flop to be injected
with a SEU must carry the inverse value of the Flip-Flop’s state
(bit flip). Next, the circuit’s RESET pin or the Global Set/Reset
(GSR) internal signal must be pulsed to force the new reset values.

1

Y1
Y0

S

D

Q

QSET

CLR

D

GSR

Circuit
Reset

Set/Reset
Switch Bit

1-to-2
DEMUX

Figure 6 Set/Reset Simplified Circuit of a CLB Flip-Flop

The process of injecting a SEU in a CLB Flip-Flop requires

one readback and one reconfiguration phase. Additionally, in
order to recover from the injected SEU a reconfiguration phase is
required that will revert the SR switches to their original full-
configuration bitstream state.

A Fault Injection Cycle consists of the steps depicted in Figure
8. Using the same algorithm, single or multiple upsets can be
injected.

Configure device with original bitstream;
Readback Flip-Flop Original Start-Up State;
Pulse Clock Until Fault Injection Cycle End;
FFR=test responses from fault free device;
A: For (S=0; S<#Flip-Flop Sites; S++) do

Pulse Circuit Reset;
Pulse Clock Until Injection Time;
Readback State of All Flip-Flops;
Change S/R Switches of All FFs to match State;
Invert S/R Switch of Target Flip-Flop;
Pulse Circuit Reset or GSR;
Pulse Clock Until Fault Injection Cycle End;

TR ← test responses from device;
If (TR==FFR) then Fault_Detected ←false;

Else Fault Detected ←true;
Change S/R Switches of All FFs to Original
Start-Up State;

End loop A;

Figure 8 Design Flip-Flop Fault injection cycle algorithm

A4
A3 A3

A2 A2

A1A1A1A1

1XXX XXXX

A2 A2

A1A1A1A1

11XX 1XXX

111X 11XX

1111 111X 11X1 11XX 1X11 1X1X 1XX1 1XXX X111 X11X X1X1 X1XX XX11 XX1X XXX1 XXXX

1X1X 1XXX X11X X1XX XX1X XXXX

X1XX XXXX

(8-15) (0-15)

(12-15) (8-15)

(14-15) (12-15)

15 14-15 13, 15 12-15 11, 15 10-11, 14-
15

9, 11, 13,
15 8-15 7, 15 6-7, 14-15 5, 7, 13, 15 4-7, 12-15 3, 7, 11, 15

2-3, 6-7,
10-11,
14,15

1, 3, 5, 7, 9,
11, 13, 15

0-15

(10-11, 14-15) (8-15) (6-7, 14-15) (4-7, 12-15)
(2-3, 6-7,
10-11, 14-

15)
(0-15)

(0-15)(4-7, 12-15)

Figure 7 Binary Decision Tree for selecting LUT used bit positions

The time required to reconfigure the population of Flip-Flops
is dependent on their dispersion on the device, due to the
organization of the Virtex architecture in frames [15], as well as
the number of S/R switches that need to be reconfigured. To allow
for faster reconfiguration/readback, the registers in the circuit
should be confined within the smallest amount of CLB columns,
thus minimizing the number of frames to be read back from the
device or reconfigured. A change in future FPGA architectures
addressing the described problem would provide the means for
faster emulation processes.

4.3. Supported Fault Detection Scenarios

In this section we provide five possible fault detection
scenarios supported by our fault emulator platform, each
applicable to different type of design under test (DUT)
implementation, as follows. The authors of this paper simply
provide examples of use for the proposed fault emulation
platform.
1. The Memory Resident scenario. This scenario is applicable to

a class of DUTs that store their responses in BlockRAM.
Thus, in this scenario (Figure 9a), the configuration bitstream
contains the DUT, any user-defined TPG and control logic
circuit, and sufficient amount of BlockRAM. The TPG
produces the test patterns (by means of pseudorandom or
deterministic hardware) that are fed to the DUT and the output
of the circuit is stored in BlockRAM. An entire test is run for a
defined number of patterns with a fault-free DUT. The test
responses are read back from the BlockRAM and stored in the
host computer’s memory. Then, for each fault in the list being
injected to the DUT, the test responses are read back and
compared to those of the fault-free DUT (Figure 5). The
software supports the “no fault dropping” attribute for
diagnosis. At the beginning of each fault injection cycle, the
BlockRAM needs to be erased to protect from erroneous
results already residing in BlockRAM. This scenario is very
time consuming in hardware since for each fault injection
cycle it requires two partial reconfigurations (one to erase all
BlockRAM cells used and one to inject the fault), and a partial
readback of the used BlockRAM columns. However, this
scenario allows for extensive investigation on the impact of
each test pattern applied as input to the DUT. At the end of the
emulation process, a list of each fault injected and the list of
patterns detecting it is generated.

2. The Golden Memory Responses scenario. This is a modified
version of the Memory Resident scenario for speed increase
(Figure 9b) applicable to the same class of DUTs. The fault-
free circuit will store its responses in BlockRAM and any
subsequent fault injection cycles will only compare the
responses of the DUT to the ones already stored in
BlockRAM. An output pin will assert to indicate that a fault
has been detected. The host computer can record the clock
cycle at which the signal is asserted and stop the test
prematurely. In this scenario, no BlockRAM configuration
and readback is performed for each fault injection cycle. Since

clocking is stopped as soon as the first faulty response is
detected (premature fault injection cycle termination), this
scenario is extremely fast.

3. The Hardware Redundancy scenario. This scenario is
applicable to designs with duplication. The Golden DUT
(GDUT) provides the fault-free test responses, while the
Target DUT (TDUT) is injected with faults. A comparator is
connected to the primary outputs of both DUTs to indicate the
detection of a fault (Figure 9d). In terms of speed this scenario
is equivalent to the Golden Memory Results scenario, without
the need for the initial fault-free circuit execution of the latter.
Premature fault injection cycle termination is supported.

4. The Built-In Self-Test (BIST) scenario. This scenario is
applicable to a class of DUTs that are integrated with BIST
circuits asserting an output signal to indicate the detection of a
fault (Figure 9d). There is no requirement for BlockRAM
reconfiguration/ readback which transfer large amounts of
data between the host computer and the FPGA, as in the
Memory Resident scenario; and since injecting a fault requires
transferring a very small amount of data, this scenario is
considerably faster than the previous two scenarios. Premature
fault injection cycle termination is supported.

5. The Register State scenario. This scenario is applicable to a
class of DUTs that store their responses in distributed Flip-
Flops. In this scenario (Figure 9e) we assume that any injected
fault will eventually appear in the Flip-Flops of the DUT.
After executing a fault injection cycle, the state of the DUT’s
registers, or a small subset of these, is read back by the fault
emulator and compared to that of the fault-free circuit. Besides
fault injection (one partial reconfiguration), a series of partial
read backs is required (according to the dispersion of Flip-
Flops in the device, as mentioned previously). This scenario
can be considerably slower than the BIST scenario, yet faster
than the Memory Resident scenario depending on the number
and topology of Flip-Flops used (restricted within the
minimum possible amount of CLB columns). If full readback
is required or dispersion is extensive, this scenario is slower
than the Memory Resident scenario.
In all scenarios, the user can choose to inject faults in specific

areas/ modules of the FPGA or in the entire implemented design,
thus including any BIST circuit.

5. Experimental Results
5.1. LUT SEU Injection Experiments

For the LUT SEU investigation, several experiments were
performed. A set of tests using the time consuming Memory
Resident scenario (Figure 9a) were performed on a behavioral
model of a 32x32 bit non-pipelined multiplier which was
synthesized using the Xilinx Synthesis Tool (XST). This scenario
was chosen to allow for the maximum level of observability in the
circuit’s test results and allow for direct comparison of our
developed XHWIF ports with the VirtexDS simulator. The Golden
Memory Responses, Hardware Redundancy and Built-In Self-Test

DUT
with
BIS T

Contro l Log ic

DUT
T
P
G

(d) (e)

Contro l Log ic

T
P
G

R
A
M

F
P
G
A

T
P
G

=

R
A
M

(b)(a)

DUT

Control Log ic

DUT F ault

vo
te

r

(c)

DUT

DUT

DUT

T
P
G

F ault

Fault

Figure 9 Supported fault detection scenarios

scenarios would have been difficult to use for comparison
purposes since VirtexDS would not allow the monitoring of
combinational signal outputs. Furthermore, the Memory Resident
scenario is a good metric for the effect of a slow communications
bus in the injection process, which for the other scenarios would
not be easily recognizable.

The TPG circuit used to feed the inputs of the multiplier is a
64bit maximal length LFSR. We made use of an FSM test
controller requiring two clock cycles per test pattern. The 64bit
result from the multiplier is stored in BlockRAM on the second
clock cycle. After N number of clock pulses, N/2 patterns have
been applied and their results stored. Three different sets of results
were captured, one using VirtexDS and two using our XHWIF
implementations (SPP and USB). Average times per fault
injection cycle were measured (time measurements include
BlockRAM erasure, fault injection, circuit clocking, BlockRAM
readback and comparison with fault-free circuit responses).

As expected from a software simulator, VirtexDS did not scale
well with increasing number of circuit execution clock cycles
(Table 2). Contrary to VirtexDS where most time is spent in
simulated circuit execution, the use of FPGA hardware emulation
spends most of its time in communicating reconfiguration data to
the FPGA. As seen through our experiments, hardware fault
emulation achieved a speed-up of up to 53.55 times over fault
simulation when using SPP. When the faster USB port was used a
speed-up of up to 221.14 times was achieved.

LUTs=1189,

Fault Locations=10297 VirtexDS SPP
XHWIF

USB
XHWIF

Patterns Fault
Coverage

Test
Time/Fault (s)

Speed
Increase

Speed
Increase

64 93.95% 18.3 8.71 42.56
100 98.68% 25 11.90 55.19
128 99.12% 30 14.29 62.76
256 99.14% *59 27.96 121.40
512 99.14% *113 53.55 221.14

* average time estimated for 100 fault injection cycles
Table 2 LUT SEU injection experimental results

Use of any hardware-based fault detection scenario which

removes the need for redundant data transfers dramatically
decreases the required amount of time per fault injection cycle. In
Table 3, times spent per operation in the Memory Resident
scenario are analyzed. The above times are complemented with
delays introduced by communications bus overhead, software
comparison processing and Java code execution. It is apparent,
that a faster configuration/readback facility would allow for faster
fault injection cycles using the same scenario. Clocking the design
does not contribute as much to the overall time as the other
factors, while more than 85% of total fault injection cycle time is
spent in BlockRAM read and write operations.

Hardware Operation Time Spent (%)
Erase BlockRAM 40,2
LUT Fault Injection 7,2
Execution 0,1
Upload BlockRAM 45,2
LUT Fault Scrubbing 7,2

Table 3 Times per operation in Memory Resident scenario

Comparing fault injection cycle times for few clock cycles

gives a fair impression of the speed-up imposed by the use of
hardware. At higher numbers of executed clock cycles, the

advantage of fault emulation is far more evident with a speed
increase of two orders of magnitude. Compared to the work of [8],
we have allowed an average speed increase of 39 times in full
device configuration using the same FPGA board when using the
faster USB XHWIF implementation. This was made possible due
to the faster communications bus which allows for faster device
reconfiguration and readback, as well as the higher frequency of
the system clock used to clock the FPGA.

When hardware based fault detection scenarios were used with
the USB XHWIF port, we experienced a maximum fault injection
cycle of 50ms, with two LUT reconfiguration steps and one
execution phase with fault injection cycle prematurely ending as
soon as the fault is detected. Therefore, in realistic fault emulation
experiments the use of hardware-based fault detection (Golden
Memory Responses, Hardware Redundancy and Built-In Self-Test
scenarios) would be of much more practical value.

5.2. Flip-Flop SEU Injection Experiments

For the Flip-Flop SEU investigation, a set of experiments were
performed using the Register State scenario. The DUT used was a
32x32bit 4-stage pipelined multiplier generated by Xilinx’s CORE
Generator 6.2. Both inputs of the multiplier were connected to a
64bit maximal length LFSR, also generated using CORE
Generator. The multiplier output was connected to a 64bit
maximal length MISR. An injection target symbol list file (.lst)
was created to include all Flip-Flop symbols used by the
multiplier. Another symbol list file was created to include the
MISR Flip-Flops, which the fault emulator would monitor for test
results. The fault injection point in time for each Flip-Flop was
randomly chosen by the script generator utility limited within the
range of clock cycles per Fault Injection Cycle. All modules were
constrained inside an area of 17 successive CLB columns, with
module hierarchy preserved and each module occupying: LFSR (2
columns), multiplier (14 columns) and MISR (1 column). The
MISR Flip-Flops were intentionally placed within one column to
allow for faster access to the monitored Flip-Flop values. A total
of 1,232 Flip-Flops were used by the implemented circuit, out of
which, 128 were utilized by the LFSR and MISR modules, and the
remaining 1,104 utilized by the multiplier. All experiments
resulted in 100% fault coverage.

1,104

Flip- Flops VirtexDS SPP
XHWIF

USB
XHWIF

Patterns Test
Time/Fault (s)

Speed
Increase

Speed
Increase

64 9.48 1.75 4.10
128 10.65 1.96 4.59
256 13.25 2.44 5.71
512 18.26 3.35 7.87
1024 28.07 5.08 11.90
2048 *44.30 7.88 18.47
65536 *1235.40 204.30 467.95
* average time estimated for 20 fault injection cycles

Table 4 Flip-Flop SEU injection experimental results

As seen from the numerical results in Table 4, VirtexDS scales

extremely poorly with increasing number of simulated circuit
execution cycles. It is evident that processor intensive simulation
of a few thousands or tens of thousands clock cycles for large
sequential circuits would be impractical. For 64 test patterns
applied to the DUT, the SPP XHWIF port achieves an average
speed increase of 1.75 times over VirtexDS, while the USB

XHWIF port is 4.1 times faster than VirtexDS. For 65,536 test
patterns, the SPP XHWIF port achieves a speed increase of 204.3
times, while the USB XHWIF port an increase of 467.95 times
over VirtexDS. A speed increase of three orders of magnitude is
practically achieved when transferring from simulation to
emulation experiments. With larger circuit designs and higher
number of test patterns, an even higher speed increase is
achievable.

In each measurement taken using hardware emulation, 50-60%
of the test time is spent in Flip-Flop state readback prior to fault
injection. This step is extremely time-consuming since the state of
all used Flip-Flops must be recorded in order to decide which S/R
switches need to be reconfigured to an inverted value. However,
this decision step allows for shorter reconfiguration times. Higher
test speed performance from the USB XHWIF port is attributed to
the higher upload transfer rate, compared to that of the SPP port
(nearly twice as fast). Clocking the design has little impact on test
time per fault. It is evident that much time is spent in
communicating reconfiguration and readback data, thus for
accelerated emulation experiments it is imperative that a fast
communication bus is employed.

6. Conclusions

In this paper we have presented a low-cost FPGA fault
emulator platform that efficiently performs emulation experiments
for evaluation of fault detection and test pattern generation
techniques, without the need for expensive and harmful radiation
tests or custom hardware. Any Virtex-based FPGA board can be
employed without the need for modifications in the software
portion. The only requirement is that an XHWIF interface port for
the board, using the SelectMAP configuration port, is available or
developed.

We have targeted our work in SEU faults affecting the LUT
configuration bits as well as the design Flip-Flops. A set of five
supported non-intrusive fault detection scenarios was presented
for researchers and test engineers to evaluate for use with their
applications. We have compared a software simulator and two
low-cost hardware implementations with slightly different features
based on the same FPGA device and development board. We have
also compared fault coverage, fault simulation (using VirtexDS)
and fault emulation times for combinational circuits, as well as for
sequential circuits. A speed increase of two orders of magnitude
has been witnessed for combinational circuits when comparing
fault emulation to fault simulation. Moreover, a speed increase of
three orders of magnitude was experienced with sequential
circuits. A minimum Fault Injection Cycle duration of 50ms per
fault in LUT configuration bits was experienced when using our
faster supported scenarios. It has become evident that the
transition from a fault simulator to a fault emulator environment
shifts the problem space from that of processing power to that of
communications bandwidth.

In future works we will attempt to include more configuration
bits in the fault injection process. Routing is the best candidate
since it constitutes the majority of bits in the configuration
bitstream.

References
[1] M. Caffrey, P. Graham, E. Johnson, and M. Wirthlin, “Single-Event

Upsets in SRAM FPGAs”, MAPLD International Conference,
Laurel MD, USA, 2002.

[2] M. Rebaudengo, M. Sonza Reorda, M. Violante, “Simulation-based
analysis of SEU effects of SRAM-based FPGAs”, FPL2002:
International Conference on Field Programmable Logic and
Application, pp. 607-615, 2002.

[3] M. Ceschia, M. Violante, M. Sonza Reorda, A. Paccagnella, P.
Bernardi, M. Rebaudengo, D. Bortolato, M. Bellato, P. Zambolin,
and A. Candelori, “Identification and Classification of Single-Event
Upsets in the Configuration Memory of SRAM-Based FPGAs”,
IEEE Transactions on Nuclear Science, Vol. 50, No. 6, pp. 2088-
2094, Dec 2003.

[4] E. Johnson, M. Caffrey, P. Graham, N. Rollins, M. Wirthlin,
“Accelerator Validation of an FPGA SEU Simulator”, IEEE
Transactions on Nuclear Science, Vol. 50, Issue 6, pp. 2147- 2157,
Dec 2003.

[5] M. Alderighi, S. D’Angelo, M. Mancini, G. R. Sechi, “A Fault
Injection Tool for SRAM-based FPGAs”, Proceedings of the 9th
IEEE International On-Line Testing Symposium, IOLTS, pp. 129-
133, 2003.

[6] S. McMillan, B. Blodget, and S. Guccione, “VirtexDS: A Virtex
Device Simulator”, SPIE 2000.

[7] A. Parreira, J. P. Teixeira, M. B. Santos, “Built-in self-test
preparation in FPGAs”, In Proc. Of the 7th IEEE Workshop on
Design and Diagnostics of Electronic Circuits and Systems, pp. 83-
90, Apr 2004.

[8] L. Antoni, R. Leveugle, B. Feher, “Using Run-Time
Reconfiguration for Fault Injection Applications”, IEEE
Transactions on Instrumentation and Measurement, Vol. 52, pp.
1468-1473, Oct 2003.

[9] P. Bernardi, M. Sonza Reorda, L. Sterpone, M. Violante. “On the
Evaluation of SEU Sensitiveness in SRAM-Based FPGAs”, 10th
IEEE International On-Line Testing Symposium (IOLTS'04), p.
115, 2004.

[10] F. Lima Kastensmidt, L. Sterpone, L. Carro, M. Sonza Reorda, “On
the Optimal Design of Triple Modular Redundancy Logic for
SRAM-based FPGAs”, Design, Automation and Test in Europe
(DATE'05), Volume 2, pp. 1290-1295, 2005.

[11] M. Aguirre, J.N. Tombs, F. Muñoz, V. Baena-Lecuyer, A.
Torralba, L.G. Franquelo, “A Hardware Approach for SEU
Immunity Verification using Xilinx FPGA's”, DCIS, XIX Design
on Circuits and Integrated Systems Conference, pp. 479-484, Nov
2004.

[12] S. A. Guccione, D. Levi, and P. Sundararajan, "JBits: A Java-based
interface for reconfigurable computing," in Second Annual Military
and Aerospace Applications of Programmable Devices and
Technologies Conference (MAPLD), Laurel, MD, Sept 1999.

[13] S. Guccione, S. McMillan, and P. Sundararajan, "Testing FPGA
Devices using JBits," 4th Military and Aerospace Programmable
Logic Devices (MAPLD) International Conference, Laurel,
Maryland, Sept 2001.

[14] P.Sundararajan, S.Guccione, D.Levi, “XHWIF: A portable
hardware interface for reconfigurable computing”, Proc. of
Reconfigurable Technology: FPGAs and Reconfigurable
Processors for Computing and Communications, SPIE 4525, pp.
97-102, Aug. 2001.

[15] Xilinx Inc., “Virtex Series Configuration Architecture User Guide”,
Xilinx Application Note XAPP151, Version 1.7, Oct 2004.

