
A GENERIC PURPOSE, CROSS-PLATFORM, HIGH EXTENSIBLE
VIRTUAL MACHINE

John Vlachoyiannis
darksun4@gmail.com

Panagiotis Kenterlis,
P.Kenterlis@mprolab.teipir.gr

John N.Ellinas
jellin@teipir.gr

Department of Electronic Computer Systems
Technological Education Institute of Piraeus
P. Ralli & Thivon 250, 12244 Egaleo, Greece

ABSTRACT

Along with the emergence and public acceptance of different operating systems and
platforms during the past few years, came the need for quick cross-platform development
solutions. This need was partially fulfilled by cross-compilers, due to the variety of underlying
hardware. Virtual machines (VMs), whose technology was revived by the evolution of
hardware and the successful use in the fast evolving Internet (Java) and mobile devices, came
to fill the void and became an invaluable tool for developers and users. Emulators/Simulators,
graphic engines, operating system VMs, interpreted languages and Turing machines are some
of the fields where virtual machines are being used nowadays. The drawbacks of virtual
machines are the execution speed (which diminishes as processor speed increases) and the
actual development, as the programming of a virtual machine requires time and a more
advanced knowledge of programming.

This paper describes a prototype, open source, cross-platform Virtual Machine tool
(named Generic purpose Nano Virtual Machine or gNVM), that minimizes the effort of
creating a virtual machine from zero code level, by providing a cross-platform, fast,
small-sized and highly extensible virtual machine. With gNVM, users can develop virtual
machines for 8-bit processors, graphic engines, Universal Turing machines, programming
languages, imaginary virtual machines using any kind of instruction set (even in their own
national language) or express complicated functions through the simple editing of a
human-readable text file, at a nominal performance cost. The implementation in C language
ensures portability to other platforms and provides satisfactory execution speed.

KEYWORDS
virtual machine tool, cross-platform, universal Turing machines

1. INTRODUCTION

The classical approach for a VM implementation (more precisely VMs for emulators) is
full virtualization, which employs a VM which attempts to emulate the full hardware
architecture as accurately as possible [2]. The advantage of this method is that software
requires no modification to be executed by the emulator (pure virtualization) and very
accurate responses from the program can be obtained. Conversely, the engineeging cost of

building emulation solutions for complicated hardware is enormous. For example, there is a
plethora of Gameboy [13] emulators (a very successful handheld video game console by
Nintendo) as well as Z80/8085/6502 processor based system emulators for which, even
though there is little difference between the function of their Central Processing Unit (CPU),
there is constant reinvention of the main parser and execution engine.

In this paper we will present the Generic purpose Nano Virtual Machine (gNVM), a
prototype register-based Virtual Machine having significant differences from other
purpose-specific VMs such as a cross-platform kernel, dynamic instruction set editable
through a human-readable text file, a macro instruction system enabling the construction of
complex instructions (super instructions) and being able to execute self modifying code
(SMC). gNVM is a VM Creation Tool that aids in the creation of expandable and fast VMs,
operating in many platforms, ranging from Unix to Symbian (mobile), at a minimal
engineering cost.

2. OVERVIEW

gNVM strives to aid the fast and easy creation of a register-based VM, highly expandable
and cross-platform executable. The main advantage of gNVM is that VM specification
(number and name of registers, instruction table), is being read from a text file through
initialization (.nvm file) and enables the easy creation of other VMs simply by editing that
file. gNVM's capabilities are greatly extended with the presence of the Macro System, where
an instruction (called super instruction) can be constructed by a series of smaller instructions,
and the Extended VM Application Interface (API), where new instructions can be assigned to
user functions.

2.1 GNVM CHARACTERISTICS

gNVM is a Virtual Machine incorporating many pioneering features which are very useful
not only to students that like to experiment in assembly or learn about virtual machines, but
also to any developer interested in creating a cross platform, powerful VM with ease and
more importantly, in the least possible time.

Some of gNVM's features are :

• Easy creation of a new Virtual Machine without prior knowledge or code
• Configuration of the whole VM through comprehensible coding in text files
• Portability (gNVM has been ported even to mobile devices)
• Easy creation of super instructions through gNVM's Macro System
• Abstract number of interrupts, registers and instructions
• Small kernel (less than 40 lines of ANSI-C code)
• Binary translation
• Ability to include comments for every instruction (for educational purposes)
• Easy creation of a new Assembly languages even in native language (Greek)
• A MS-Windows Graphical User Interface (GUI)
• Programming a processor in another processor's assembly language
• Creation of new instructions that call external routines (rendering a 3d scene)
• Ability to emulate self modifying code (SMC)

2.1.1 VM'S INTERNAL STRUCTURE

The most popular virtual machines, like JAVA VM [6] or Microsoft's .NET [7], use a
virtual stack implementation rather than the register oriented architectures used in real
processors, due to the simplicity of their implementation and ability to produce more compact
byte code. Even though, gNVM could be implemented as a stack-based VM, the register
model was chosen due to the similarity with the processor's architecture, the low thrashing of
stack and the reduction of executed byte code (resulting in faster execution).

Register machines have two major advantages which are being exploited by gNVM.
Firstly, register-based VMs can reduce the number of executed instructions (leading to better
performance) despite the increase in the number of fetches. Secondly, register-based VMs
can effortlessly change the order of VM instructions. Reordering stack machine instructions is
very difficult since all instructions use the stack and every instruction depends on the previous
one. Register instructions can be reordered (provided there are no data dependences)
permitting gNVM’s Macro System to create super instructions efficiently and with ease.

2.1.2 CODE DISPATCING

The interpretation of a byte code involves fetching the byte code, performing the function
of the instruction and dispatching(fetching, decoding and starting) the next instruction. The
most time consuming part of the dispatching circle is decoding of instruction. The simplest
and most widely used approach is switch dispatch.

gNVM uses call threading methods for dispatching code which ensures portability (based
on ANSI-C) and provides good performance. Call threading is similar to indirect threading,
with the overhead of calling a function.

2.1.3 EXPANDABILITY

gNVM instructions are constructed in an object oriented (OO) manner. The creation of an
instruction is done simply by editing a .nvm text file following an easily comprehensible
format as shown in Table 1.

Name MOV A, B
Effect equal_r1_r2
Time of execution 1 ms
Comments Moves contents of register B to A
gNVM byte-code 14
Real Object code 0x44

Table 1. Instruction Format

Adding new instructions is performed by simply adding an instruction block like the above
and defining the properties of the instruction. In addition, Extended VM API allows the user
to create new instructions that enhance interaction between VM and other devices or
programs (eg., instructing the VM to render a 3d scene). Combining these instructions, using

the Macro System, we are are able to create super instructions as easily as creating a simple
instruction.

2.1.4 PORTABILITY

Even though many optimizations (such as thread tokening instruction dispatch or parts
written in assembly) could provide an increase in performance [3], they could counteractingly
obstruct portability to other platforms. A small kernel, along with the selection of the
instruction set, ensures portability even in devices with small memory capabilities (like
mobile devices) and more importantly, easy debugging.

3. IMPLEMENTATION

In our work we have implemented a virtual machine, according to the principles and
architecture described in the prior sections, using function pointers and an instruction dispatch
method similar to token threading in ANSI-C language. We have created a register-based VM
which performs sufficiently well for our purposes and outperforms stack-based VMs due to
the similarity with the processor architecture, the low thrashing of stack and the reduce of
executed byte code (resulting in faster execution).

gNVM is a little endian register-based VM (though change to a big endian architecture is
possible through the NVM specification file), with abstract number of registers, no garbage
collection, ability to handle macros of instructions, multiple interrupts, two memories (one
read-only and the other read/write). Additionally it has an easily expandable architecture and
may be used for emulating even self modifying code (SMC).

Fig. 1. gNVM's architecture

3.1 INSTRUCTION EMULATION

The instruction table is read from a text file during initialization. The implementation of a
simple 8-bit processor (eg., Zilog’s z80) is a procedure of describing the instructions
of the processor inside the text file as shown in Fig. 2.

@LD (BC), A
op_state 136
effect equal_rel_reg_1
time_of_execution 1
comment load to (BC) contents of A
instr_len 1
gNVM_byte 59[1][2][0];
obj 02

Fig. 2. An instruction block

The above figure informs VM that "LD (BC),A" instruction has object code "02", executes
in "1 ms", has a length of "1 byte" and comment "loads to (BC) contains of A". Changing the
name of the instruction to be represented by another human language (for example in Greek),
will allow its users to program and debug in their own native language, a feature of great
importance when used for educational purposes. Additionally, users may choose to code their
programs in their preferred assembly language (e.g, program the 6502 processor using
Z80-like assembly instructions). Furthermore, changing an instruction’s object code, we are
able to convert the resulting binary code to another machine (binary translation). For
example, a program written for a z80 processor, can be exported to 8085 very easily.

The most efficient method for dispatching the next VM instruction is direct threading [4].
Instruction dispatch consists of fetching the instruction's address and branching it to the
routine, as this implements instruction's address.Unfortunately, indirect or direct threading
cannot be expressed in C and while switch threading is the fastest and widely used method for
emulators, is significantly slower. Using GNU’s C compiler (gcc) and the labels as values
feature (available since gcc 2.0), which makes direct and indirect threading possible, provide
a speed increase in instruction emulation, however that would have a detrimental effect on
portability as it violates the ANSI-C.

As a result, to maintain high portability and sufficient speed, we use call threading, a
faster dispatching method than switch. The table of pointers is a table with instruction objects
where the execution of each instruction is performed through the simple execution of a
function (Object Oriented style). The advantages of using this method are the dynamic
binding of instructions and a well formed specification of the instruction, starting from the
object code and ending to a description (which can be used for educational purposes on
emulators).

The fetching part occurs in virtual memory (fetching gNVM bytecode) but all the reading
and writing are performed in real memory (with writing being performed both in real and
virtual memory). By having two memories, we can have a compiled version of the program in
gNVM byte code for executing and a real memory for writing data and printing the real object
code. Any attempt for SMC is detected by a special mark at the beginning of every gNVM
byte code. Absence of that mark, means that the data written on non-data memory (execution
memory) are byte codes and VM should search the instruction table for the matching gNVM

byte code. Failure to do so, doesn’t affect VM operation, however any attempt to execute that
instruction, will result in an runtime error.

3.2 VIRTUAL MACHINE API

Each instruction from the instruction table is bound to a function during the initialization.
This function can be part of the Standard VM API provided with the current implementation
of gNVM, or Extended VM API, where the function is supplied by the user.

3.2.1 STANDARD VM API

Standard API is a set of functions that most processors have, like copying a register to
another. The instruction set of Standard VM API is quite large (300 instructions - but it can
be dramatically decreased during compilation time for memory or other resources limited
devices) and has functions almost identical to an 8-bit processor. The main reason for having
such an extensive Standard VM API is that in order to emulate a great range of instructions,
we would use the Macro System (adding overthread to the system) or use a similar approach
like the .NET Virtual Machine.

The .NET VM provides a very small API and determines the type of argument in real
time, resulting in a high performance loss. Our approach is similar to the Parrot VM [8],
another very fast register-based VM with many instructions. As previously stated, we can
shorten the Standard VM API during compile time, and either avoid the use of same
instructions or create them with Macro System, if possible. We can add more functions using
the Extented VM API or Macro system by altering the nvm file.

3.2.2 EXTENDED VM API

Extended API is a set of functions described by the user, which effectively allows for user
customized functions of any kind. The main difference from Standard VM API is that the
gNVM kernel must be recompiled with these functions. By using the Extended VM API ,
users can create instructions that perform complicated task not directly related to the VM as
shown in Fig. 3.

 @COPY (src_file), (dest_file)
op_state 66
effect ex_copy
time_of_execution 0
comment copies a file
instr_len 5
gNVM_byte 9;
 obj 55

Fig. 3. Using Extended VM API

The new COPY instruction, calls a function found in extended.h, where it takes the two
filenames from the specified memory and makes a copy. It is the same with the "cp source
dest" command found in Linux shell. Thus, we can create any kind of command available to
gNVM and then use it. Futhermore, Extended VM API, has control over VM properties (like
registers and memory), so it is possible to mix functions with VM properties.

Adding functions to the Extended API requires that after the function is coded, then it
must be compiled with gNVM's kernel.c and finally added to the extended.nvm file.

3.2.3 MACRO SYSTEM

Macro instructions are instructions formed by grouping other instructions. For example,
lets assume you have created instructions COPY (src file,dest file) and DELETE (file). You
can create instruction DO ALL that does both of them like in Fig. 4.

@DELETE (filename)
op_state 66

effect ex_delete
time_of_execution 0

comment deletes a file
instr_len 3

gNVM_byte 10;
obj 56

@DO_ALL (src_file)
op_state 66

effect MACRO
time_of_execution 0

comment instruction doing a move
instr_len 3

gNVM_byte 0;3;9[X][X];10[3000];0
obj 57

Fig. 4. Using Macro System

By invoking DO ALL, the COPY instruction is executed and then the DELETE instruction
with the filename being an argument the must exist in memory address 3000h.

A macro instruction, can contain instructions from both VM APIs and there is no need in
recompiling the gNVM kernel. The addition of macro instructions, is carried out by editing of
the nvm file.

3.3 INTERRUPTS - IO

An Interrupt manager is being invoked every time after an instruction is dispatched. A
table of interrupts (formed by Extended API functions) is being used to look up the occurring
interrupt's table entry. Every interrupt object has three members that bind to two functions
from Standard or Extended VM API.

• is on
• wait for
• what to do

Initially, the Interrupt manager checks for the "is on" member. If it equals to ’1’, the
interrupt is hooked and every VM dispatch cycle the "wait for" function (which is a part of
Standard/Extended VM API) is executed. If it returns true (the condition is met, interrupt
condition) the "what to do" member/function (Standard/Extended VM API) is being called.

Using this simplistic yet powerful system approach, we can implement interrupts that
interact with a variety of sources and devices. For example, we can place a "wait for" hook
function to query a POP3 server for email and if a new message arrives then an interrupt will
be invoked, calling the "what to do" function (possibly a "fetch email message" function).
The Interrupt manager can handle an abstract number of interrupts, however the check for
each interrupt, affects VM execution.

4. GNVM IN EDUCATION

One of the most difficult subjects for students entering the field of computer science is the
assembly language and how processors work. Usually emulators targeting to that audience are
pretty much outdated (many of them run only in MS-DOS), are proprietary (thus students
cannot fiddle with their source and find how they work or expand them) and have many
problems in their execution to other similar platforms (for example Windows XP). gNVM
allows students to experiment on their favorite platform (even on their mobile device) and
provides the full source under an open source licence.

By altering the NVM file, students can experiment in writing assembly in their own native
language or even create a totally new assembly for their own VM without the need of
knowing a programming language. More importantly, they can experiment with interrupts
which are mapped to real devices (devices in parallel ports for example) and consult the
built-in instruction's commenting system for more information regarding an instruction.

Providing a Windows GUI for writing, assembling and debugging programs, which has a
Windows XP look-and-feel, students can experiment more easily with the assembly language.
The GUI is a front-end to the gNVM kernel. It consists of a grid for displaying instructions
and their object code, a grid for registers and flags (which can be manipulated in real time)
and two grids for memory access. If a binary file is loaded, the corresponding ".asm" file (if
exists) will be loaded to the a Mini Editor where corrections can be made. A stack grid exists
for displaying the current stack contents and buttons for controlling program execution (Run,
Stop, Step, Step Every X seconds, Run until PC = XXXXh). In addition, text boxes can be
configured for interacting with interrupts or IO operations. Also, using the Extended VM API,
we can assign interrupts and IO operations to be mapped to/from other real devices, enabling
the students to see the results in real (non-emulated) hardware. The appearance of the GUI is
illustrated in Photo 1.

Ph.1 : gNVM emulating a z80 processor in MS-Windows GUI.

Moreover, our work could be adopted for the development of an Operating System (OS).
By providing a high-level API through the Extended VM API, students can create OSes
without the hassle of dealing with the underlying architecture and focus on their OS
development.

5. EVALUATION

In order to evaluate our work, we created a working prototype of a z80 processor, a
Windows GUI that can be used for educational purposes and a console-based GUI for Linux
and Symbian Operating systems.

To allow for the emulation of other processors, the NVM file needs to be processed. Based
on the Z80 nvm file, we created a VM that has a Greek instruction table and accepts interrupts
from POP3 servers. The only development tool we used for emulating the processors and
changing the instruction table was the emacs text editor [12]. No new API needed to be
introduced due to processors' similarity. Furthermore, as a proof-of-concept, we created
PUSH instructions using macro instructions and DELETE FILE instructions, showing macro
and Extensive API. Demonstrating gNVM’s portability, a port to Symbian platform was made
and gNVM was executed successfully by a mobile device, as shown in Photo 2.

Ph. 2. gNVM running on a Symbian-based mobile device (Nokia 9210)

Finally, a crude proof-of-concept Java VM was emulated as evidence that even
stack-based VMs can be emulated.

6. CONCLUSIONS

gNVM can be used for 8-bit CPU emulation, Universal Turing Machines, Graphic Engine
Machines and in general for a great variety of VMs depending on the quality of the extended
functions. The open structure of gNVM, provides us with the ability to build scalable systems,
easily maintainable and portable, without the requirement of advanced programming skills.
As a proof-of-concept, an emulation of a z80 processor is provided along with its graphical
user interface for MS-Windows platform. Changing instructions or implementing new ones is
achievable by changing a human readable text file. As an example, we can convert the
instruction set (all or part of it) to another national language (Greek for example) or to another
Assembly language (8085). Moreover, gNVM is already ported to other platforms such as
Solaris, Linux, MS-DOS and Symbian where a console interface is provided.

By using gNVM, we can create new emulators and Virtual machines in a short period of
time, with many features and (more importantly) without a noticeable performance cost, due
to the fact that gNVM is written in ANSI-C and the usage of call threading method for
dispatching code. The structure of gNVM, ensures that developers will focus on
implementing new ideas and experimenting with new features, instead of writing and
debugging code.

7. REFERENCES

[1] R.P. Goldberg. ”Survey of virtual machine research” . IEEE Computer Magazine, 7(6),
1974.

[2] L. Seawright and R. MacKinnon ”VM/370 - a study of multiplicity and usefulness” .
IBM Systems Journal, pages 4-17, 1979.

[3] Brian Davis, Andrew Beatty, Kevin Casey, David Gregg and John Waldron "The Case
for Virtual Register Machines". Proceedings of the 2003 workshop on Interpreters, virtual
machines and emulators, Available at: http://www.acm.com

[4] J. R. Bell. "Threaded code" . Communications of the ACM, 1973.

[5] Xen , The Virtual Machine Monitor , Available at :
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/

[6] SUN's JAVA VM, Available at : http://java.sun.com/
[7] .NET Virtual Machine, Available at : http://www.microsoft.com/net/default.mspx
[8] Parrot Register-based VM, Available at : http://www.parrotcode.org/
[9] Quake 3 VM, Available at : http://www.idsoftware.com/business/techdownloads/
[10] Donald Knuth MMIX 2009, Available at :

http://www-cs-faculty.stanford.edu/~uno/mmix.html
[11] GNU MDK, Available at : http://www.gnu.org/software/mdk/mdk.html
[12] GNU Emacs, Available at: http://www.gnu.org/software/emacs/
[13] Gameboy, Available at: http://www.nintendo.com/channel/gba

